题目
已知等差数列{an}的前3项和为6,前8项和为-4
设bn=(4-an)q^(n-1) (q不等于0,n属于正整数)求数列{bn}的前n项和Sn
设bn=(4-an)q^(n-1) (q不等于0,n属于正整数)求数列{bn}的前n项和Sn
提问时间:2021-01-02
答案
an= a1+(n-1)d
前3项和= (a1+d)3 = 6
a1+d = 2 (1)
前8项和=(2a1+7d)4 = -4
2a1+7d= -1 (2)
2(1)-(2)
-5d=5
d=-1
a1=3
an = 3-(n-1) = 4-n
bn = (4-an)q^(n-1)
= n.q^(n-1)
consider
1+x+x^2+..+x^n= [x^(n+1) -1]/(x-1)
1+2x+3x^2+..+nx^(n-1) = {[x^(n+1) -1]/(x-1)}'
= [ nx^(n+1) -(n+1)x^n + 1]/(x-1)^2
Sn = [ nq^(n+1) -(n+1)q^n + 1]/(q-1)^2
前3项和= (a1+d)3 = 6
a1+d = 2 (1)
前8项和=(2a1+7d)4 = -4
2a1+7d= -1 (2)
2(1)-(2)
-5d=5
d=-1
a1=3
an = 3-(n-1) = 4-n
bn = (4-an)q^(n-1)
= n.q^(n-1)
consider
1+x+x^2+..+x^n= [x^(n+1) -1]/(x-1)
1+2x+3x^2+..+nx^(n-1) = {[x^(n+1) -1]/(x-1)}'
= [ nx^(n+1) -(n+1)x^n + 1]/(x-1)^2
Sn = [ nq^(n+1) -(n+1)q^n + 1]/(q-1)^2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1Essential Ultimate:teaching,coaching,playing是什么意思
- 2___he realized it was time to go back home.
- 3how many water is there in your cup 找错
- 4it was announced that only when the fire was under control .to return to their homes
- 5一食用油瓶上标有5L的字样,油的密度为0.92*10的三次方kg/立方米,球友的质量为多少千克?
- 6一位会计在结账时发现账面上多了10元3角5分,经检查,是把一笔钱数的小数点错一位,记错了的这笔钱款实际是多少钱?
- 7魔方PLL上面的字母是什么意思
- 8以点0为圆心画一个半径是2厘米的圆可以画()个
- 9Altium designer 元器件如何水平翻转
- 10汉代三国时期的牧,刺史,太守,哪个官职大?有什么区别呢?