当前位置: > 怎样证明外切圆的半径R是内切圆的半径r的2倍...
题目
怎样证明外切圆的半径R是内切圆的半径r的2倍
求证:等边三角形的外接圆半径R室内切圆半径r的二倍

提问时间:2021-01-02

答案
你画个图.找出三角形的中心为O
三角形的三个顶点分别为ABC
连接OA,OB,OC
则OA,OB,OC就为三角形外接圆的半径R
分别延长AO,BO,CO
分别交BC与D,AC与E,AB与F
则OD,OE,OF为内切圆的半径r
由角度60度和直角三角形就可得
OA=2OE=2OF
同理OB=2OD=2OF
OC=2OC=2OE
所以R=2r
问题得证!
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.