题目
泰勒公式求无穷小阶 (1-2X)^1/2是X的几阶无穷小 【(1-2X)^1/2】-【(1-3X)^1/3】又是X的几阶无穷 主要告诉我要把他们展开到几阶 为什么展开到那一阶 不是只要那一阶不等于0就OK了吗
提问时间:2021-01-02
答案
首先纠正你的问题:(1-2X)^1/2不是x的无穷小(在x趋于0时)
到底要展开到几阶,你觉得展开到一阶就行了吗?[(1-2X)^1/2-[(1-3X)^1/3]如果只是展开到一阶
那么结果就为0,现在比如他作为分子,取分母为2x,分子与分母都是趋于0的
你能说极限为0吗?
所以必须展开到高阶,比如二阶,这样可能产生含有x的项,从而求出极限
到底要展开到几阶,你觉得展开到一阶就行了吗?[(1-2X)^1/2-[(1-3X)^1/3]如果只是展开到一阶
那么结果就为0,现在比如他作为分子,取分母为2x,分子与分母都是趋于0的
你能说极限为0吗?
所以必须展开到高阶,比如二阶,这样可能产生含有x的项,从而求出极限
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点