当前位置: > 如图所示,在菱形ABCD中,E、F分别是BC、CD上的点,且已知∠B=∠EAF=60°,证明:∠CEF=∠BAE....
题目
如图所示,在菱形ABCD中,E、F分别是BC、CD上的点,且已知∠B=∠EAF=60°,证明:∠CEF=∠BAE.

提问时间:2021-01-02

答案
证明:连接AC,
∵四边形ABCD是菱形,
∴AB=BC,
∵∠B=60°,
∴△ABC是等边三角形,
∴AB=AC,∠ACB=∠B=60°,
∵∠BCD=180°-∠B=120°,
∴∠ACF=∠BCD-∠ACB=60°,
∴∠B=∠ACF,
∵∠BAE+∠EAC=∠EAC+∠CAF=60°,
∴∠BAE=∠CAF,
在△BAE和△CAF中,
∠BAE=∠CAF
AB=AC
∠B=∠ACF

∴△ABE≌△ACF(ASA),
∴AE=AF,
∵∠EAF=60°,
∴△AEF是等边三角形,
∴∠AEF=60°,
∵∠AEF+∠CEF=∠B+∠BAE,
∴∠CEF=∠BAE.
由在菱形ABCD中,∠B=∠EAF=60°,易证得△ABC是等边三角形,继而可证得△ABE≌△ACF,继而证得△AEF是等边三角形;继而可得∠AEF=60°,则∠AEF+∠CEF=∠B+∠BAE,即可证得结论.

菱形的性质.

此题考查了菱形的性质、全等三角形的判定与性质以及等边三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.