当前位置: > 在△ABC中,a,b,c分别为角A,B,C的对边,设f(x)=a²x²-(a²-b²)x-4c² 若f(2)=0...
题目
在△ABC中,a,b,c分别为角A,B,C的对边,设f(x)=a²x²-(a²-b²)x-4c² 若f(2)=0
求角C的取值范围

提问时间:2021-01-02

答案
通过f(2)=0,得到a,b,c的关系式,利用基本不等式推出a2+b2=2c2≥2ab,通过余弦定理求出C的范围∵f(x)=a2x2-(a2-b2)x-4c2,f(2)=0∴4a2-(a2-b2)2-4c2=0∴a2+b2-2c2=0∴a2+b2=2c2≥2ab当且仅当,a=b=c时等号成立...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.