当前位置: > 一题切线问题:如图,在矩形ABCD中,AB=5,AD=3....
题目
一题切线问题:如图,在矩形ABCD中,AB=5,AD=3.
如图,在矩形ABCD中,AB=5,AD=3,点E是CD上的动点,以AE为直径的⊙O与AB交于点F,过点F作FG⊥BE于点G.当E是CD的中点时,求证:FG是⊙O的切线.

提问时间:2021-01-02

答案
证明:
连接DE,OF
∵AE是直径
∴∠AFE=90°
∴四边形ADEF是矩形
∴AF=DE
∵E是CD的中点
∴AF=1/2AB
∵AO =OF
∴OF‖BE
∵FG⊥BE
∴OF⊥FG
∴FG 是⊙O的切线.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.