题目
1.已知双曲线C:x²/a²-y²/b²=1(a>o,b>o)的右焦点为F,过F且斜率为根号三的直线交C于A,B两点.若向量AF=4向量FB,则双曲线C的离心率为多少?
2.若抛物线y²=2px(p>o)上存在两点A,B.且OA⊥OB,证明:直线AB必过定点.
在下感激不尽.
2.若抛物线y²=2px(p>o)上存在两点A,B.且OA⊥OB,证明:直线AB必过定点.
在下感激不尽.
提问时间:2021-01-02
答案
1、这是2009年全国高考题.一些参考书上给的答案太拉杂,我用平面几何法做,简单明了.
设AF=4m,BF=m.过A、B分别作双曲线的准线的垂线,垂足分别为A1、B1,根据双曲线定义,e=AF/AA1得AA1=4m/e,同理BB1=m/e,又因直线斜率√3,即角BAA1=60°,cos60°=(AA1-BB1)/AB=(3m/e)/5m=1/2,解得e=6/5.
2、设A((y1)^2/2p,y1),B((y2)^2/2p,y2),有OA⊥OB得y1y2=-4p^2.有两点坐标得直线方程
(y-y1)/(y2-y1)=(x-(y1)^2/2p)/((y2)^2/2p-(y1)^2/2p)即y=(2px-4p^2)/(y1+y2)
显然x=2p时,y=0.即直线AB过定点(2p,0).
设AF=4m,BF=m.过A、B分别作双曲线的准线的垂线,垂足分别为A1、B1,根据双曲线定义,e=AF/AA1得AA1=4m/e,同理BB1=m/e,又因直线斜率√3,即角BAA1=60°,cos60°=(AA1-BB1)/AB=(3m/e)/5m=1/2,解得e=6/5.
2、设A((y1)^2/2p,y1),B((y2)^2/2p,y2),有OA⊥OB得y1y2=-4p^2.有两点坐标得直线方程
(y-y1)/(y2-y1)=(x-(y1)^2/2p)/((y2)^2/2p-(y1)^2/2p)即y=(2px-4p^2)/(y1+y2)
显然x=2p时,y=0.即直线AB过定点(2p,0).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1陶器和中国这两个的英语单词之间有什么联系
- 2一筐桃,如果每只猴子分8个,则有两只猴子少分2个,如果每只猴子分6个刚好分完,求猴子和桃子各多少只
- 3At the wrong time,meet the person,are destined to do just a cry
- 4水果店里有苹果300kg,比运来的雪梨少5分之2,雪梨有多少千克
- 5连词成句is,there,behind,cafe,a,the
- 6狗8年了相当于人类几岁啊?
- 7八年级第一学期物理
- 8that is something...
- 9D是xy平面上(1,1)(-1,1)和(-1,-1)为顶点的三角形区域,则∫∫(xy+cosxsiny)dxdy=?
- 10有A、B、C三个用绝缘支架支撑的相同导体球,A带正电,B和C不带电.问:
热门考点