当前位置: > 过点A(1,43)作圆x2+y2+2x−43y−12=0的弦,其中长度为整数的弦共有_条....
题目
过点A(1,4
3
)
作圆x2+y2+2x−4
3
y−12=0
的弦,其中长度为整数的弦共有______条.

提问时间:2021-01-02

答案
x2+y2+2x−4
3
y−12=0
的圆心坐标O(-1,2
3
),半径是5,
则|OA|=
(1+1)2+(4
3
−2
3
)
2
=4
,最小弦长是 6,最大弦长是 10,长度为整数的弦长有6、7、8、9、10
其中7、8、9的弦长各有2条,长度为整数的弦共有 8 条.
故答案为:8
求出圆心,圆心到点A的距离,再求出最小弦长,最大弦长,取其整数.

直线与圆的位置关系.

本题考查圆的一般方程,两点间的距离公式;容易疏忽最小弦长和最大弦长是各一条,其它各2条.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.