当前位置: > 如何证明?△ABC中 tan「(A-B)/2」=(a-b)/(a+b)...
题目
如何证明?△ABC中 tan「(A-B)/2」=(a-b)/(a+b)

提问时间:2021-01-02

答案
(a-b)/(a+b)
=(1-b/a)/(1+b/a)
=(1-sinB/sinA)/(1+sinB/sinA)
=(sinA-sinB)/(sinA+sinB)
={sin[(A+B)/2+[(A-B)/2]-sin[(A+B)/2-(A-B)/2]}/{sin[(A+B)/2+[(A-B)/2]+sin[(A+B)/2-(A-B)/2]}
={cos[(A+B)/2]*sin[(A-B)/2]}/{sin[(A+B)/2]*cos[(A-B)/2]}
=tan[(A-B)/2]/tan[(A+B)/2]
你很可能抄错题了!
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.