当前位置: > 证明1/n+1/(n+1)+1/(n+2) +……+1/n2>1...
题目
证明1/n+1/(n+1)+1/(n+2) +……+1/n2>1
证明不等式:1/n+1/(n+1)+1/(n+2) +……+1/n^2>1 (n>1且n为整数) 不要用数学归纳法证明

提问时间:2021-01-02

答案
1/n+1/(n+1)+1/(n+2) +……+1/n^2>
1/(n+1)+1/(n+1)+1/(n+2) +……+1/n^2>
2/(n+1)+1/(n+2) +……+1/n^2>
2/(n+2)+1/(n+2) +……+1/n^2>
3/(n+2)+1/(n+3)……+1/n^2>
``````
n^2+1/n^2>1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.