当前位置: > 22.设方阵A^3满足A^3-A^2+2A-E=0,证明:A及A-E均可逆....
题目
22.设方阵A^3满足A^3-A^2+2A-E=0,证明:A及A-E均可逆.

提问时间:2021-01-02

答案
A^3-A^2+2A=E
A(A^2-A+2)=E所以A可逆
A^3-A^2+2A-2E=-E
A^2(A-E)+2(A-E)=-E
(A^2+2)(A-E)=-E
(-A^2-2)(A-E)=E所以A-E可逆
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.