题目
假设n是整数,证明n^3+2n是3的倍数
提问时间:2021-01-02
答案
n是整数,任何n都可以表示为3k或3k±1的形式,(k为整数)
当n=3k时,n^3+2n=n(n²+2)显然是3的倍数
当n=3k±1时,
n^3+2n
=n(n²+2)
=(3k±1)[(3k±1)²+2]
=(3k±1)(9k²±6k+3)
=3(3k±1)(3k²±2k+1)是3的倍数
当n=3k时,n^3+2n=n(n²+2)显然是3的倍数
当n=3k±1时,
n^3+2n
=n(n²+2)
=(3k±1)[(3k±1)²+2]
=(3k±1)(9k²±6k+3)
=3(3k±1)(3k²±2k+1)是3的倍数
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点