当前位置: > 已知a,b是平面内两个互相垂直的向量,|a|=1,|b|为根号3,若向量c=ta(1-t)b,求|c|的最小值...
题目
已知a,b是平面内两个互相垂直的向量,|a|=1,|b|为根号3,若向量c=ta(1-t)b,求|c|的最小值

提问时间:2021-01-01

答案
因为|c|>0,所以求|c|最小值也就是|c|^2的最小值,而|c|^2等于的c与c数量积,利用条件该数量积等于4t^2-6t+3=4(t-3/4)^2+3/4,所以|c|的最小值为二分之根号3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.