题目
如图,等腰梯形ABCD中,AB∥CD,AD=BC.将△ACD沿对角线AC翻折后,点D恰好与边AB的中点M重合.
(1)点C是否在以AB为直径的圆上?请说明理由;
(2)当AB=4时,求此梯形的面积.
(1)点C是否在以AB为直径的圆上?请说明理由;
(2)当AB=4时,求此梯形的面积.
提问时间:2021-01-01
答案
(1)点C在以AB为直径的圆上.
理由如下:连接MC,
∵AB∥CD,
∴∠DCA=∠BAC,
∵∠DAC=∠BAC,∠DCA=∠MCA,
∴∠DAC=∠MCA,
∴AD∥MC,
∴四边形AMCD是平行四边形,
∴AM=CD,
∵△ACD沿对角线AC翻折后,点D恰好与边AB的中点M重合,
∴DC=MC,
∴AM=MC,
∵点M是AB的中点,
∴AM=BM,
∴AM=MC=BM,
∴点C在以AB为直径的圆上;
(2)由(1)得四边形AMCD是平行四边形,
∴AD=MC,
∵AD=BC,
∴MC=BC,
∴△BCM是等边三角形,
∵AB=4,
∴BC=BM=
AB=2,
过点C作CE⊥MB,垂足为E,
则BE=
MB=1,
由勾股定理得,CE=
理由如下:连接MC,
∵AB∥CD,
∴∠DCA=∠BAC,
∵∠DAC=∠BAC,∠DCA=∠MCA,
∴∠DAC=∠MCA,
∴AD∥MC,
∴四边形AMCD是平行四边形,
∴AM=CD,
∵△ACD沿对角线AC翻折后,点D恰好与边AB的中点M重合,
∴DC=MC,
∴AM=MC,
∵点M是AB的中点,
∴AM=BM,
∴AM=MC=BM,
∴点C在以AB为直径的圆上;
(2)由(1)得四边形AMCD是平行四边形,
∴AD=MC,
∵AD=BC,
∴MC=BC,
∴△BCM是等边三角形,
∵AB=4,
∴BC=BM=
1 |
2 |
过点C作CE⊥MB,垂足为E,
则BE=
1 |
2 |
由勾股定理得,CE=
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程. 我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好 奥巴马演讲不用看稿子.为什么中国领导演讲要看? 想找英语初三上学期的首字母填空练习…… 英语翻译 最新试题
热门考点
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
|