题目
已知数列{an}为等差数列,公差d≠0,{an}的部分项组成下列数列:ak1,ak2,…,akn,恰为等比数列,其中k1=1,k2=5,k3=17,求k1+k2+k3+…+kn.
提问时间:2021-01-01
答案
设{an}的首项为a1,∵ak1,ak2,ak3成等比数列,
∴(a1+4d)2=a1(a1+16d).
得a1=2d,q=
=3.
∵akn=a1+(kn-1)d,又akn=a1•3n-1,
∴kn=2•3n-1-1.
∴k1+k2+…+kn=2(1+3+…+3n-1)-n
=2×
-n=3n-n-1.
∴(a1+4d)2=a1(a1+16d).
得a1=2d,q=
ak2 |
ak1 |
∵akn=a1+(kn-1)d,又akn=a1•3n-1,
∴kn=2•3n-1-1.
∴k1+k2+…+kn=2(1+3+…+3n-1)-n
=2×
1−3n |
1−3 |
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点