当前位置: > 设A B是双曲线x2-y2=1上的两点 线段AB的中点坐标为(1/2,2) 求直线AB的方程...
题目
设A B是双曲线x2-y2=1上的两点 线段AB的中点坐标为(1/2,2) 求直线AB的方程

提问时间:2021-01-01

答案
AB的中点坐标M(1/2,2)
xA+xB=2xM=2*(1/2)=1,yA+yB=2yM=2*2=4
[(xA)^2-(yA)^2]-[(xB)^2-(yB)^2=1-1
(xA+xB)*(xA-xB)-(yA+yB)*(yA-yB)=0
k(AB)=(yA-yB)/(xA-xB)=(xA+xB)/(yA+yB)=1/4
y-2=(1/4)*(x-1/2)
AB:2x-8y+15=0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.