题目
(1)已知椭圆C x^2/2+y^2=1 的右焦点为F .O为坐标原点 (1)求过点O,F并且与直线X=2相切的圆的方程
(2)F是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的一个焦点,A,B是椭圆的两个顶点,椭圆的离心率为1/2,点C在X轴上,BC⊥BF,B,C,F三点确定的园M的半径为2 (2)求椭圆的方程
(2)F是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的一个焦点,A,B是椭圆的两个顶点,椭圆的离心率为1/2,点C在X轴上,BC⊥BF,B,C,F三点确定的园M的半径为2 (2)求椭圆的方程
提问时间:2021-01-01
答案
(1) c² = a² - b² = 2 - 1 = 1,c = 1
F(1,0)
显然圆心在x = (1 + 0)/2 = 1/2上,半径 = 2 - 1/2 = 3/2
圆心P(1/2,p):OP = 3/2 = √[(1/2 - 0)² + (p - 0)²]
p = ±√2
圆的方程:(x - 1/2)² + (y ±√2)² = 9/4
(2)显然B只能是上顶点或下顶点,设为上顶点(0,b),不妨设F(c,0)
BF斜率为-b/c,BC斜率为c/b
BC的方程:y = cx/b + b
y = 0,x = -b²/c
C(-b²/c,0)
CF的中垂线为x = (-b²/c + c)/2 = (c² - b²)/(2c)
FB的中点为N(c/2,b/2),中垂线为y - b/2 = (c/b)(x - c/2)
取x = (c² - b²)/(2c) ,y = 0
圆心M((c² - b²)/(2c),0)
MF = 半径2 = c - (c² - b²)/(2c)
c² + b² = a² = 4c (i)
离心率为c/a = 1/2 (ii)
由(i)(ii):c = 1,a = 2,b² = 3
椭圆的方程:x²/4 + y²/3 = 1
F(1,0)
显然圆心在x = (1 + 0)/2 = 1/2上,半径 = 2 - 1/2 = 3/2
圆心P(1/2,p):OP = 3/2 = √[(1/2 - 0)² + (p - 0)²]
p = ±√2
圆的方程:(x - 1/2)² + (y ±√2)² = 9/4
(2)显然B只能是上顶点或下顶点,设为上顶点(0,b),不妨设F(c,0)
BF斜率为-b/c,BC斜率为c/b
BC的方程:y = cx/b + b
y = 0,x = -b²/c
C(-b²/c,0)
CF的中垂线为x = (-b²/c + c)/2 = (c² - b²)/(2c)
FB的中点为N(c/2,b/2),中垂线为y - b/2 = (c/b)(x - c/2)
取x = (c² - b²)/(2c) ,y = 0
圆心M((c² - b²)/(2c),0)
MF = 半径2 = c - (c² - b²)/(2c)
c² + b² = a² = 4c (i)
离心率为c/a = 1/2 (ii)
由(i)(ii):c = 1,a = 2,b² = 3
椭圆的方程:x²/4 + y²/3 = 1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1《汉书》是___史 《资治通鉴》是___史
- 2如果5x=4y,那么x/y=()/(),()/4=()/5
- 3描写人物外貌的段落
- 4和我共用一个卧室用英语怎么说
- 5一牧场草,17头牛吃30天,或19头吃24天,现若干头牛吃草,6天后4头牛买走,余下牛2天吃完,原有多少牛?
- 6飞机在飞行时受到的空气阻力与速率的平方成正比.若飞机以速率v匀速飞行时,发动机的功率为P,则当飞机以速率nv匀速飞行时,发动机的功率为( ) A.nP B.2nP C.n2P D.n3P
- 7My favourite food_____(is,are)fish and chips,because it tastes______(good,well).
- 8没完成作业写保证书怎么写,
- 9在生物组织中还原糖、脂肪、蛋白质的鉴定实验中,关于实验材料选择的叙述中,错误的是( ) A.甘蔗茎的薄壁组织、甜菜的块根等都含有较多的糖且近于白色,因此可以用于进行还原
- 10固体、液体和气体的定义是什么,怎么区分它们?
热门考点