题目
已知函数f(x)=x2+ax-4在区间(0,1)内只有一个零点,则a的取值范围是______.
提问时间:2021-01-01
答案
∵由于判别式△=a2+16>0,∴函数f(x)有两个零点.
再由已知二次函数f(x)=x2+ax-4在区间(0,1)内只有一个零点,
故有f(0)f(1)=-4×(a-3)<0,
解得 a>3,故a的取值范围是 (3,+∞),
故答案为 (3,+∞).
再由已知二次函数f(x)=x2+ax-4在区间(0,1)内只有一个零点,
故有f(0)f(1)=-4×(a-3)<0,
解得 a>3,故a的取值范围是 (3,+∞),
故答案为 (3,+∞).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点