当前位置: > 在平行四边形ABCD中对角线AC和BD相交于点O,AC=10,BD=8若AC与BD的夹角∠AOD=60°,求ABCD的面积...
题目
在平行四边形ABCD中对角线AC和BD相交于点O,AC=10,BD=8若AC与BD的夹角∠AOD=60°,求ABCD的面积
试讨论,若把题目中的“平行四边形ABCD”改为“四边形ABCD”且∠AOD=θ,AC=a,BD=b,试求四边形ABCD的面积(用含θ,a,b的代数式表示)
4*(1/2)*AO*DO*sin60
这步是为什么?

提问时间:2021-01-01

答案
因为在平行四边形ABCD中,AO=CO=5,BO=DO=4
所以△AOD和△COD是等底同高三角形
所以S△AOD=S△COD
同理S△AOB=S△BCO=S△AOD
所以平行四边形ABCD面积
=4S△AOD
=4*(1/2)*AO*DO*sin60
=5√3
同样的方法,得
平行四边形ABCD面积
=4S△AOD
=4*(1/2)*AO*DO*sin60
=(1/2)absinθ
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.