题目
6,设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)≥k²成立时,总可推出f(k+1)≥(k+1)²
那么,下列命题总成立的是( )A,若f(1)<1成立,则f(10)<100成立 B ,若f(2)<4成立,则f(1)≥1成立 C,若f(3)≥9成立,则当k≥1,均有f(k)≥k²成立 D,若f(4)≥25成立,则当k≥4,均有f(k)≥k²成立
那么,下列命题总成立的是( )A,若f(1)<1成立,则f(10)<100成立 B ,若f(2)<4成立,则f(1)≥1成立 C,若f(3)≥9成立,则当k≥1,均有f(k)≥k²成立 D,若f(4)≥25成立,则当k≥4,均有f(k)≥k²成立
提问时间:2020-12-31
答案
假设f(k+1)≥(k+1)² 成立
设t=k-1 (k≥2)
则 f(t+1)≥(t+1)² 成立 则 f(k)≥(k)²
所以在k≥2, f(k+1)≥(k+1)² 成立,总可以推出f(k)≥(k)² 所以 c错
f(4)≥25>4² 则当k≥2时均有f(k)≥k²成立 所以 D √
设t=k-1 (k≥2)
则 f(t+1)≥(t+1)² 成立 则 f(k)≥(k)²
所以在k≥2, f(k+1)≥(k+1)² 成立,总可以推出f(k)≥(k)² 所以 c错
f(4)≥25>4² 则当k≥2时均有f(k)≥k²成立 所以 D √
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1初三物理比热容方面计算题
- 2已知y_1=2x,y_2=2/y_1 ,y_3=2/y_2 ,……,y_2006=2/y_2005 ,y_2007=2/y_2006 ,求y_1∙……y_200
- 3一批学生参加课外活动小组,每5人一组多2人,每6人一组多1人,每7人一组少2人.参加课外活动小组的有几人?
- 4卫风氓中三次写淇水
- 5囚绿记的行文线索是什么
- 6句子成分分析:The cave,his hiding place is secret.
- 74.12元等于多少元多少角多少分
- 8They live in China.(变一般疑问句)
- 9will you take your
- 10对于方程x^2/2-k+y^2/k-1,当k∈——时,方程表示焦点在x轴上的双曲线