当前位置: > 设y=f(x)(x∈R)对任意实数x1x2,满足f(x1)+f(x2)=f(x1*x2)求证f(1)=f(-1)=0和f(x)是偶函...
题目
设y=f(x)(x∈R)对任意实数x1x2,满足f(x1)+f(x2)=f(x1*x2)求证f(1)=f(-1)=0和f(x)是偶函

提问时间:2020-12-30

答案
f(1)+f(1)=f(1*1)=f(1)
所以:f(1)=0
f(-1)+f(-1)=f((-1)*(-1))=f(1)=0
f(-1)=0
所以:f(1)=f(-1)=0
f(-x)=f(-1)+f(x)=0+f(x)=f(x)
f(x)是偶函数
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.