题目
求证F(x)=x的n次的导数为n倍x的n-1次 用导数的定义做
提问时间:2020-12-30
答案
f '(x) = lim[ f(x + △x) - f(x) ] / △x
f(x + △x) - f(x)
= (x + △x)^n - x^n
= C(n,n)x^n·(△x)^0 + C(n-1,n)x^(n-1)·(△x)^1 + C(n-2,n)x^(n-2)·(△x)^2 + ...+C(0,n)x^0·(△x)^n -x^n
= C(n-1,n)x^(n-1)·(△x)^1 + C(n-2,n)x^(n-2)·(△x)^2 + ...+C(0,n)x^0·(△x)^n
则有
[ f(x + △x) - f(x) ] / △x
= C(n-1,n)x^(n-1) + C(n-2,n)x^(n-2)·(△x)^1 + ...+C(0,n)x^0·(△x)^(n-1)
从上式可以看到除了第一项外,在△x趋近于0时,后面所有的项都等于0
因此原极限就是C(n-1,n)x^(n-1) = nx^(n-1)
C(n-1,n)是组合.上面就是用到了二项式定理展开的.
f(x + △x) - f(x)
= (x + △x)^n - x^n
= C(n,n)x^n·(△x)^0 + C(n-1,n)x^(n-1)·(△x)^1 + C(n-2,n)x^(n-2)·(△x)^2 + ...+C(0,n)x^0·(△x)^n -x^n
= C(n-1,n)x^(n-1)·(△x)^1 + C(n-2,n)x^(n-2)·(△x)^2 + ...+C(0,n)x^0·(△x)^n
则有
[ f(x + △x) - f(x) ] / △x
= C(n-1,n)x^(n-1) + C(n-2,n)x^(n-2)·(△x)^1 + ...+C(0,n)x^0·(△x)^(n-1)
从上式可以看到除了第一项外,在△x趋近于0时,后面所有的项都等于0
因此原极限就是C(n-1,n)x^(n-1) = nx^(n-1)
C(n-1,n)是组合.上面就是用到了二项式定理展开的.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1硬度计测量塑胶与橡胶的硬度有什么区别
- 2实验室所在的当地大气压是如何影响声速的
- 3关于善意的谎言的事例与名言警句 各3个
- 4跑道的弯道是半圆形.再一次200米短跑比赛中(只过一次弯道),比赛时甲跑最里圈直径是20米乙跑最外圈,两
- 5核酸,葡萄糖.核苷酸,麦芽糖那个属于以碳链为骨架的生物大分子
- 6数学推理1,2,4,4,1,()
- 75/9的3/5与3/5的3/10的差是多少/算式
- 8飞机的起飞过程是从静止出发,在直跑道上加速前进,当达到一定速度时离地升空,已知飞机加速度前进路程
- 9一个长方体棱长总和为96厘米,长、宽、高的比是3:2:1,这个长方体的体积是多少?
- 10Mary ____was having_( have ) lunch at noon yesterday.