当前位置: > 已知函数f(x)=2x3+3ax2+3bx+8在x=1及x=2处取得极值. (1)求a、b的值; (2)求f(x)的单调区间....
题目
已知函数f(x)=2x3+3ax2+3bx+8在x=1及x=2处取得极值.
(1)求a、b的值;
(2)求f(x)的单调区间.

提问时间:2020-12-30

答案
(1)∵函数f(x)=2x3+3ax2+3bx+8,∴f′(x)=6x2+6ax+3b,∵f(x)在x=1及x=2处取得极值,∴f′(1)=6+6a+3b=0f′(2)=24+12a+3b=0,解得a=-3,b=4.(2)∵a=-3,b=4,∴f′(x)=6x2-18x+12,由f′(x)=6x2-...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.