当前位置: > 一个球与一个正棱柱的三个侧面和两个底面都相切,一直这个球的体积为32/3π,那么这个正三棱柱的体积是?...
题目
一个球与一个正棱柱的三个侧面和两个底面都相切,一直这个球的体积为32/3π,那么这个正三棱柱的体积是?
48√3
为什么?

提问时间:2020-12-29

答案

 
球的体积公式:V=4πR^3/3  ,现已知球体积是32π/3,所以球的半径是:R=2
所以,三棱柱的底面积是:S = (4√3 * 2 /2) * 3 = 12√3
 三棱柱的高等于球的直径:h=2R=4
所以棱柱的体积是:V=Sh=48√3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.