当前位置: > 等腰直角三角形ABC,AB=AC,角BAC=90度M为边AC的中点BM垂直AD交BC于D,垂足为E连接DM,求证角AMB=角DMC...
题目
等腰直角三角形ABC,AB=AC,角BAC=90度M为边AC的中点BM垂直AD交BC于D,垂足为E连接DM,求证角AMB=角DMC

提问时间:2020-12-29

答案
证明:
过C点做CF⊥AC,交AD延长线于点F
∴∠ACF=90度
∵∠BAC=90度
∴AB‖CF
∴∠BAE=∠F
∵∠BAC=90度
∴∠BAE+∠MAE=90度
∵BM⊥AD
∴∠AMB+∠MAE=90度
∴∠BAE=∠AMB
∴∠AMB=∠F
在三角形ABM和三角形AFC中
∵AB=AC,∠ACF=∠BAC=90度,∠AMB=∠F
∴三角形ABM全等于三角形AFC(AAS)
∴AM=CF
∵AM=CM
∴CM=CF
在三角形CMD和三角形CFD中
∵∠ACB=∠FCD=45度(因为三角形ABC是等腰直角三角形,所以角ACB=45度,所以角DCF=90-45=45度),CM=CF,CD=CD
∴三角形CMD全等于三角形CFD(SAS)
∴∠F=∠DMC
又∵∠F=∠AMB
∴∠AMB=∠DMC
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.