当前位置: > 三角形ABC中,c=根2+根6,角C=30度,则a+b的最大值是...
题目
三角形ABC中,c=根2+根6,角C=30度,则a+b的最大值是

提问时间:2020-12-29

答案
AB^2=AC^2+BC^2-2ACBCcosC
(根号6-根号2)^2=AC^2+BC^2-2ACBCcos30度
化简,得AC^2+BC^2-根号3ACBC=8-4根号3
即(AC+BC)^2-(2+根号3)ACBC=8-4根号3
因ACBC<=[(AC+BC)/2]^2,
所以(AC+BC)^2-(2+根号3)ACBC>=(AC+BC)^2-(2+根号3)[(AC+BC)/2]^2
有8-4根号3>=(2-根号3)/4*(AC+BC)^2
(AC+BC)^2<=16
有AC+BC<=4
AC+BC的最大值是4
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.