当前位置: > 已知函数f(x)=2 sqrt(2) sin(2x-π/4) (x∈R)...
题目
已知函数f(x)=2 sqrt(2) sin(2x-π/4) (x∈R)
(1)求f(x)的最小正周期及f(x)取得最大值时x的集合
(2)求证:函数f(x)的图像关于x= — π/8对称

提问时间:2020-12-29

答案
1)最小正周期T=2π/2=π
取得最大值时x满足2x-π/4 =π/2+2kπ k属于正整数
即x=3π/8+kπ k属于正整数 因此f(x)取得最大值时x的集合为{x|x=3π/8+kπ k属于正整数}
(2)分析:要证明图像关于直线对称,只要证明图像上任意一点关于该直线的对称点也在这个图像上.
又对称轴为x= — π/8,因此只要证明f(-π/4-x)=f(x) .
证明:因为f(-π/4-x)=2 sqrt(2) sin(-π/2-2x-π/4)=2 sqrt(2) sin(-2x-3π/4)
=2 sqrt(2) sin[-π-(2x-π/4)=2 sqrt(2) sin(2x-π/4)=f(x)
所以命题得证.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.