题目
对命题“正三角形的内切圆切于三边的中点”,可类比猜想出:正四面体的内切球切于四面体各正三角形的位置是( )
A. 各正三角形的中心
B. 各正三角形内的任一点
C. 各正三角形边上的任一点
D. 各正三角形的某中线的中点
A. 各正三角形的中心
B. 各正三角形内的任一点
C. 各正三角形边上的任一点
D. 各正三角形的某中线的中点
提问时间:2020-12-29
答案
由平面中关于正三角形的内切圆的性质:“正三角形的内切圆切于三边的中点”,
根据平面上关于正三角形的内切圆的性质类比为空间中关于内切球的性质,
我们可以推断在空间几何中有:
“正四面体的内切球切于四面体各正三角形的位置是各正三角形的中心”
故选A.
根据平面上关于正三角形的内切圆的性质类比为空间中关于内切球的性质,
我们可以推断在空间几何中有:
“正四面体的内切球切于四面体各正三角形的位置是各正三角形的中心”
故选A.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点