当前位置: > 高数有关方向导数问题...
题目
高数有关方向导数问题
在椭球面2x^2+2y^2+z^2=1上求一点使函数f(x,y,z)=x^2+y^2+z^2在该点沿 向量P (1,-1,0)的方向导数最大,并求出最大值.

提问时间:2020-12-28

答案
设函数f(x,y,z)=x^2+y^2+z^2在点Q(x,y,z)处沿向量P的方向导数最大,因为函数在点Q处沿任意方向的方向导数的最大值是在梯度方向上取得,函数的梯度是向量(fx,fy,fz)=2(x,y,z) 所以,向量(x,y,z)与向量 P (1,-1,0)是同...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.