题目
如图,在△ABC中,∠BAC=108゜,AB=AC,BD平分∠ABC,交AC于D,求证:BC=CD+AB.(用两种方法)
提问时间:2020-12-28
答案
法1:(截长法)在BC上取点E使BE=BA,连DE,
∵BD平分∠ABC,
∴∠ABD=∠EBD,
在△ABD和△EBD中,
,
∴△ABD≌△EBD(SAS),
∴∠BAC=∠BED=108°,AB=EB,
∴∠DEC=72゜,
∵AB=AC,
∴∠C=∠ABC=36°,
∴∠CDE=72°,
∴∠CDE=∠CED=72°,
∴CD=CE,
则BC=BE+EC=AB+CD;
法2:(补短法)延长BA至E,使BE=BC,连DE,
∵BD平分∠ABC,
∴∠ABD=∠EBD,
在△EBD和△CBD中,
,
∴△EBD≌△CBD(SAS),
∴DE=DC,∠E=∠C=36°,
∵∠EAD=72°,
∴∠EDA=∠EAD=72°,
∴EA=ED,
∴CD=DE=AE,
则BC=BE=AB+AE=AB+CD.
∵BD平分∠ABC,
∴∠ABD=∠EBD,
在△ABD和△EBD中,
|
∴△ABD≌△EBD(SAS),
∴∠BAC=∠BED=108°,AB=EB,
∴∠DEC=72゜,
∵AB=AC,
∴∠C=∠ABC=36°,
∴∠CDE=72°,
∴∠CDE=∠CED=72°,
∴CD=CE,
则BC=BE+EC=AB+CD;
法2:(补短法)延长BA至E,使BE=BC,连DE,
∵BD平分∠ABC,
∴∠ABD=∠EBD,
在△EBD和△CBD中,
|
∴△EBD≌△CBD(SAS),
∴DE=DC,∠E=∠C=36°,
∵∠EAD=72°,
∴∠EDA=∠EAD=72°,
∴EA=ED,
∴CD=DE=AE,
则BC=BE=AB+AE=AB+CD.
法1:(截长法)在BC上取点E使BE=BA,连DE,由BD为角平分线,得到一对角相等,再由AB=EB,BD为公共边,利用SAS得出三角形ABD与三角形EBD全等,由全等三角形的对应边相等得到AB=EB,对应角相等得到∠BAC=∠BED=108°,利用邻补角定义及内角和定理求出∠CDE=∠CED=72°,利用等角对等边得到CD=CE,由BC=BE+EC,等量代换即可得证;
法2::(补短法)延长BA至E,使BE=BC,连DE,由BD为角平分线,得到一对角相等,再由CB=EB,BD为公共边,利用SAS得出三角形CBD与三角形EBD全等,利用全等三角形的对应边等,对应角相等得到ED=CD,∠E=∠C=36°,利用邻补角定义及内角和定理求出∠ADE=∠DAE=72°,利用等角对等边得到EA=ED,等量代换得到AE=DC,由BC=BE=BA+AE,等量代换即可得证.
法2::(补短法)延长BA至E,使BE=BC,连DE,由BD为角平分线,得到一对角相等,再由CB=EB,BD为公共边,利用SAS得出三角形CBD与三角形EBD全等,利用全等三角形的对应边等,对应角相等得到ED=CD,∠E=∠C=36°,利用邻补角定义及内角和定理求出∠ADE=∠DAE=72°,利用等角对等边得到EA=ED,等量代换得到AE=DC,由BC=BE=BA+AE,等量代换即可得证.
全等三角形的判定与性质;等腰三角形的判定与性质.
此题考查了全等三角形的判定与性质,以及等腰三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1物理学中的做功是什么意思?
- 2做题时经常能看到(6点日出、18点日落/7点日出、17点日落/8点日出、16点日落)这种对应情况,这种情况出现在什么条件下?有很多地区都是日出迟日落也迟啊
- 3514:35=57:x怎么解
- 4角速度有方向吗
- 5下列气体可用于充填飞艇和气球的是
- 6事在人为的意思
- 7393( )是一个四位数.数学老师说我在其中的方框中先后填入3个数字,所得的3个四位依次可被6,11,8整除.
- 8几月几日是世界水日?几月几日世界地球日几月几日世界环境日
- 9因式分解:x的平方(a-b)+(b-a)=多少
- 10_____(fortunate),he was not badly hurt in the accident.填什么
热门考点