题目
在Rt△ABC中,∠BAC=90°,AB=AC=2,点D在BC所在的直线上运动,作∠ADE=45°(A,D,E按逆时针方向).
(1)如图1,若点D在线段BC上运动,DE交AC于E.
①求证:△ABD∽△DCE;
②当△ADE是等腰三角形时,求AE的长.
(2)①如图2,若点D在BC的延长线上运动,DE的反向延长线与AC的延长线相交于点E,是否存在点D,使△ADE′是等腰三角形?若存在,写出所有点D的位置;若不存在,请简要说明理由;
②如图3,若点D在BC的反向延长线上运动,是否存在点D,使△ADE是等腰三角形?若存在,写出所有点D的位置;若不存在,请简要说明理由.
(1)如图1,若点D在线段BC上运动,DE交AC于E.
①求证:△ABD∽△DCE;
②当△ADE是等腰三角形时,求AE的长.
(2)①如图2,若点D在BC的延长线上运动,DE的反向延长线与AC的延长线相交于点E,是否存在点D,使△ADE′是等腰三角形?若存在,写出所有点D的位置;若不存在,请简要说明理由;
②如图3,若点D在BC的反向延长线上运动,是否存在点D,使△ADE是等腰三角形?若存在,写出所有点D的位置;若不存在,请简要说明理由.
提问时间:2020-12-27
答案
(1)①由∠BAC=90°,AB=AC,推出∠B=∠C=45°.
由∠BAD+∠ADB=135°,∠ADB+∠EDC=135°得到∠BAD=∠EDC.
推出△ABD∽△DCE.
②分三种情况:
(ⅰ)当AD=AE时,∠ADE=∠AED=45°时,得到∠DAE=90°,点D、E分别与B、C重合,所以AE=AC=2.
(ⅱ)当AD=DE时,由①知△ABD∽△DCE,
又AD=DE,知△ABD≌△DCE.
所以AB=CD=2,故BD=CE=2
由∠BAD+∠ADB=135°,∠ADB+∠EDC=135°得到∠BAD=∠EDC.
推出△ABD∽△DCE.
②分三种情况:
(ⅰ)当AD=AE时,∠ADE=∠AED=45°时,得到∠DAE=90°,点D、E分别与B、C重合,所以AE=AC=2.
(ⅱ)当AD=DE时,由①知△ABD∽△DCE,
又AD=DE,知△ABD≌△DCE.
所以AB=CD=2,故BD=CE=2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程. 我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好 奥巴马演讲不用看稿子.为什么中国领导演讲要看? 想找英语初三上学期的首字母填空练习…… 英语翻译 最新试题
热门考点
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
|