题目
求拉氏变换的终值定理,越详细越好,最好有证明
提问时间:2020-12-27
答案
拉普拉斯变换(英文:Laplace Transform),是工程数学中常用的一种积分变换.
如果定义:
f(t),是一个关于t,的函数,使得当t0,;
f(t)
= mathcal ^ left
=frac int_ ^ F(s),e^ ,ds
c,是收敛区间的横坐标值,是一个实常数且大于所有F(s),的个别点的实部值.
为简化计算而建立的实变量函数和复变量函数间的一种函数变换.对一个实变量函数作拉普拉斯变换,并在复数域中作各种运算,再将运算结果作拉普拉斯反变换来求得实数域中的相应结果,往往比直接在实数域中求出同样的结果在计算上容易得多.拉普拉斯变换的这种运算步骤对于求解线性微分方程尤为有效,它可把微分方程化为容易求解的代数方程来处理,从而使计算简化.在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的.引入拉普拉斯变换的一个主要优点,是可采用传递函数代替微分方程来描述系统的特性.这就为采用直观和简便的图解方法来确定控制系统的整个特性(见信号流程图、动态结构图)、分析控制系统的运动过程(见奈奎斯特稳定判据、根轨迹法),以及综合控制系统的校正装置(见控制系统校正方法)提供了可能性.
用 f(t)表示实变量t的一个函数,F(s)表示它的拉普拉斯变换,它是复变量s=σ+j&owega;的一个函数,其中σ和&owega; 均为实变数,j2=-1.F(s)和f(t)间的关系由下面定义的积分所确定:
如果对于实部σ >σc的所有s值上述积分均存在,而对σ ≤σc时积分不存在,便称 σc为f(t)的收敛系数.对给定的实变量函数 f(t),只有当σc为有限值时,其拉普拉斯变换F(s)才存在.习惯上,常称F(s)为f(t)的象函数,记为F(s)=L[f(t)];称f(t)为F(s)的原函数,记为ft=L-1[F(s)].
函数变换对和运算变换性质 利用定义积分,很容易建立起原函数 f(t)和象函数 F(s)间的变换对,以及f(t)在实数域内的运算与F(s)在复数域内的运算间的对应关系.表1和表2分别列出了最常用的一些函数变换对和运算变换性质.
如果定义:
f(t),是一个关于t,的函数,使得当t0,;
f(t)
= mathcal ^ left
=frac int_ ^ F(s),e^ ,ds
c,是收敛区间的横坐标值,是一个实常数且大于所有F(s),的个别点的实部值.
为简化计算而建立的实变量函数和复变量函数间的一种函数变换.对一个实变量函数作拉普拉斯变换,并在复数域中作各种运算,再将运算结果作拉普拉斯反变换来求得实数域中的相应结果,往往比直接在实数域中求出同样的结果在计算上容易得多.拉普拉斯变换的这种运算步骤对于求解线性微分方程尤为有效,它可把微分方程化为容易求解的代数方程来处理,从而使计算简化.在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的.引入拉普拉斯变换的一个主要优点,是可采用传递函数代替微分方程来描述系统的特性.这就为采用直观和简便的图解方法来确定控制系统的整个特性(见信号流程图、动态结构图)、分析控制系统的运动过程(见奈奎斯特稳定判据、根轨迹法),以及综合控制系统的校正装置(见控制系统校正方法)提供了可能性.
用 f(t)表示实变量t的一个函数,F(s)表示它的拉普拉斯变换,它是复变量s=σ+j&owega;的一个函数,其中σ和&owega; 均为实变数,j2=-1.F(s)和f(t)间的关系由下面定义的积分所确定:
如果对于实部σ >σc的所有s值上述积分均存在,而对σ ≤σc时积分不存在,便称 σc为f(t)的收敛系数.对给定的实变量函数 f(t),只有当σc为有限值时,其拉普拉斯变换F(s)才存在.习惯上,常称F(s)为f(t)的象函数,记为F(s)=L[f(t)];称f(t)为F(s)的原函数,记为ft=L-1[F(s)].
函数变换对和运算变换性质 利用定义积分,很容易建立起原函数 f(t)和象函数 F(s)间的变换对,以及f(t)在实数域内的运算与F(s)在复数域内的运算间的对应关系.表1和表2分别列出了最常用的一些函数变换对和运算变换性质.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1小明和小文二人沿铁路相向而行,速度相同,一列火车从小明身边开过用了10秒,离开小明后8分又遇到小文,从小文身边开过,仅用了9秒,问从小文与火车相遇开始再经过几小时几分几秒小
- 2已知:如图,在△ABC中,∠ACB=90°,CM是斜边AB的中线,过点M作CM的垂线与边AC和CB的延长线分别交于点D和点E. (1)求证:MC•BC=DM•AC; (2)若tanA=2/3,AD=6
- 3设A,F分别是双曲线9x^2-3y^2=1的左顶点和右焦点,点P是其右支上的一点,若△PAF是直角三角形,求P点的坐标
- 4关于蝉和狐狸的原文
- 5已知如图三角形ABC中,AD垂直BC于点D,AB+BD=DC.求证角B=2角c
- 6怎么算稀释倍数
- 7负3是实数吗
- 8操场上有学生在40至50人之间,已知男生人数与女生人数的比是6:5,操场上有男生( )人,女生( )人
- 9建立一份好的友情用英语怎么说
- 10关于初等变换和矩阵
热门考点
- 1计算:(1/2ab²)²÷(-2ab)·3a²b.
- 2观察下列运算并填空: 1×2×3×4+1=25=52; 2×3×4×5+1=121=112; 3×4×5×6+1=361=192; … 9×10×11×12+1=_=_2; 根据以上结果,猜想: (n
- 3用三角形的面积计算解决问题
- 4英语选择题的疑问
- 5已知集合A={x|x2-a2≤0其中a>0},B={x|x2-3x-4>0}且A∪B=R,求实数a的取值范围.
- 6写出几句能够激励自己的名言小学四年级上册语文练习册期中测试的阅读短文的第4小题顺便把第3小题也给解答
- 7小美读一本故事书,已读的页数与未读的页数之比是1:5,若她再读30页,则已读的页数与与未读的页数之比是3:5,这本书一共有多少页?
- 8be giad to do sth的中文的意思!
- 9这是___,像_____,像______,_____!
- 10我们有价格合理的运动包(翻译) we have ()()()()a very good price