当前位置: > 如图,设点P是边长为a的正三角形ABC的边BC上一点,过点P作PQ⊥AB,垂足为Q,延长QP交AC的延长线于点R.当点P在何处时,△BPQ与△CPR的面积之和取最大(小)值?并求出最大(小)值....
题目
如图,设点P是边长为a的正三角形ABC的边BC上一点,过点P作PQ⊥AB,垂足为Q,延长QP交AC的延长线于点R.当点P在何处时,△BPQ与△CPR的面积之和取最大(小)值?并求出最大(小)值.

提问时间:2020-12-27

答案
作业帮 在Rt△BPQ中,设PB=x,由∠B=60°,得:
BQ=
x
2
,PQ=
3
2
,从而有PC=CR=a-x,
∴△BPQ与△CPR的面积之和为:
S=
3
8
x2+
3
4
(a-x)2=
3
3
8
(x-
2
3
a)2+
3
12
a2
∵0≤x≤a,
∴当x=0时,S取最大值
3
4
a2
当x=
2
3
a时,S取最小值
3
12
a2
首先设PB=x,由∠B=60°,得:BQ=
x
2
,PQ=
3
2
,从而有PC=CR=a-x,进而表示出S=
3
8
x2+
3
4
(a-x)2,进而利用二次函数最值求法得出即可.

二次函数的最值.

此题主要考查了二次函数最值求法和三角形面积求法,表示出S与x的函数关系是解题关键.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.