当前位置: > 设a,b,c分别是三角形ABC的三个内角A,B,C所对的边,S△ABC=a^-(b-C)^2,则sinA/1-cosA=___...
题目
设a,b,c分别是三角形ABC的三个内角A,B,C所对的边,S△ABC=a^-(b-C)^2,则sinA/1-cosA=___

提问时间:2020-12-26

答案
S△ABC = 1/2 bc sinA所以 1/2 bc sinA = (a^2 -(b-C)^2)sinA = 2(a^2 -b^2 -c^2 +2bc)/bccosA = (b^2+c^2-a^2)/2bc1-cosA = (2bc - b^2 - c^2 +a^2)/2bcsinA/(1-cosA) = 2/(1/2) = 4
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.