当前位置: > 若方程x2-4x+k=0与方程x2-x-2k=0有一个公共根,则k的值应是_....
题目
若方程x2-4x+k=0与方程x2-x-2k=0有一个公共根,则k的值应是______.

提问时间:2020-12-26

答案
设这个公共根为α.
则方程x2-4x+k=0的两根为α、4-α;方程x2-x-2k=0的两根为α、1-α.
由根与系数的关系有:
 
α(4−α)=k
α(1−α)=2k;

解得
α=0
k=0
α=7
k=−21

所以当k=0或-21时,两个方程有一个公共根.
故答案是:0或-21.
如果设这个公共根为α,那么根据两根之和的表达式,可知方程x2-4x+k=0的两根为α、4-α;方程x2-x-2k=0的两根为α、1-α.再根据两根之积的表达式,可知α(4-α)=k①,α(1-α)=2k②.联立①②,即可求出α、k的值.

一元二次方程的解.

本题主要考查了公共根的定义,一元二次方程根与系数的关系及由两个二元二次方程组成的方程组的解法.高次方程组的解法在初中教材中不要求掌握,属于竞赛题型,本题有一定难度.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.