题目
如图,在等边△ABC中,D、E、F分别是BC,AC,AB上的点,且DE⊥AC,EF⊥AB,FD⊥BC,则△DEF与△ABC的面积之比等于( )
A. 1:3
B. 2:3
C.
:2
D.
:3
A. 1:3
B. 2:3
C.
3 |
D.
3 |
提问时间:2020-12-26
答案
∵DE⊥AC,EF⊥AB,FD⊥BC,∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,∴∠C=∠FDE,同理可得:∠B=∠DFE,∠A=DEF,∴△DEF∽△CAB,∴△DEF与△ABC的面积之比=(DECA)2,又∵△ABC为正三角形,∴∠B=∠C=∠A=60°,△...
三角形的面积=
×高×底,所以相似三角形的面积之比等于边之比的平方,由DE⊥AC,EF⊥AB,FC⊥BC得出△DEF与△ABC的角对应相等,即:△DEF∽△CAB,求出两个三角形的边之比即可,又知△ABC是正三角形,所以∠B=∠C=∠A=60°,利用余弦和正弦定理求出两个三角形的边之比.
1 |
2 |
相似三角形的判定与性质;三角形的面积;等边三角形的性质.
本题主要考查如何求三角形的面积之比,若能证出两个三角形是相似三角形,此时三角形的面积之比等于对应边之比的平方,只要求出对应边比即可.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1随机变量X 与 Y 相互独立,那么 X^2 与 Y^2是否独立?
- 2求下列两平行线间的距离 2x+3y-8=0和2x+3y+18=0
- 3假如给我三天光明读书笔记
- 4一项工程,甲独做24小时完成,乙独做36小时完成.现在要求20小时完成,并且两个合做的时间尽可能少.那么,甲、乙合做_小时.
- 5Our love never come back, how sad it is a word.是什么意思?
- 6怎样才能解决地球的温室效应?
- 7一钟每天快1 分钟,另一钟每天慢1分钟,现在两个钟都是12点正,问下次两钟又是12点正要相隔多长时间?
- 8设O为△ABC所在平面内一点,且满足向量OA的模的平方加上向量OB模的平方等于向量OB模的平方加上向量CA模的
- 9那些两位数能分解成三个不同素数的乘积,请全部列举
- 10#include
热门考点