题目
证明函数在区间内存在零点
具体题是这样的:已知函数f(x)=4x^3+3tx^2-6t^2+t-1,其中t>1,证明f(x)在区间(0,1)内存在零点
那么不仅仅局限于此题,如何证明函数在某区间内存在零点呢?
并且请将此具体题目的详细过程回答上 跪谢!
具体题是这样的:已知函数f(x)=4x^3+3tx^2-6t^2+t-1,其中t>1,证明f(x)在区间(0,1)内存在零点
那么不仅仅局限于此题,如何证明函数在某区间内存在零点呢?
并且请将此具体题目的详细过程回答上 跪谢!
提问时间:2020-12-26
答案
先对f(x)求导得12x^2+6tx-6t^2
令导数为0 -t,t/2
讨论t的正负
1)当t>0时,减区间为:(-t,t/2);增区间为:t/2到正无穷大和负无穷到-t
2)证明:由(II)可知,当t>0时,f(x)在(0,t/2)内单调递减,在(t/2,+∞)内单调递增,以下分两种情况讨论:
(1)当t/2≥1,即t≥2时,f(x)在(0,1)内单调递减.
f(0)=t-1>0,f(1)=-6t 2 +4t+3≤-13<0
所以对于任意t∈[2,+∞),f(x)在区间(0,1)内均存在零点.
(2)当0<t/2<1,即0<t<2时,f(x)在(0,t/2)内单调递减,在(t/2,1)内单调递增
若t∈(0,1],f(t/2)=7/4t^3+t-1≤7/4t^3<0,
f(1)=)=-6t 2 +4t+3≥-2t+3>0
所以f(x)在(t/2,1)内存在零点.
若t∈(1,2),f(t/2)=7/4t^3+t-1<7/4t^3+1<0,
f(0)=t-1>0∴f(x)在(0,t/2)内存在零点.
所以,对任意t∈(0,2),f(x)在区间(0,1)内均存在零点.
综上,对于任意t∈(0,+∞),f(x)在区间(0,1)内均存在零点.
一般就是两个解得到,x1左边带一个数,右边带一个数,要一正一负,那么就存在零点了
辛苦打字,祝你学习愉快
令导数为0 -t,t/2
讨论t的正负
1)当t>0时,减区间为:(-t,t/2);增区间为:t/2到正无穷大和负无穷到-t
2)证明:由(II)可知,当t>0时,f(x)在(0,t/2)内单调递减,在(t/2,+∞)内单调递增,以下分两种情况讨论:
(1)当t/2≥1,即t≥2时,f(x)在(0,1)内单调递减.
f(0)=t-1>0,f(1)=-6t 2 +4t+3≤-13<0
所以对于任意t∈[2,+∞),f(x)在区间(0,1)内均存在零点.
(2)当0<t/2<1,即0<t<2时,f(x)在(0,t/2)内单调递减,在(t/2,1)内单调递增
若t∈(0,1],f(t/2)=7/4t^3+t-1≤7/4t^3<0,
f(1)=)=-6t 2 +4t+3≥-2t+3>0
所以f(x)在(t/2,1)内存在零点.
若t∈(1,2),f(t/2)=7/4t^3+t-1<7/4t^3+1<0,
f(0)=t-1>0∴f(x)在(0,t/2)内存在零点.
所以,对任意t∈(0,2),f(x)在区间(0,1)内均存在零点.
综上,对于任意t∈(0,+∞),f(x)在区间(0,1)内均存在零点.
一般就是两个解得到,x1左边带一个数,右边带一个数,要一正一负,那么就存在零点了
辛苦打字,祝你学习愉快
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1硫酸氢钠与氢氧化钠反应生成什么
- 2That man ----- -----(一定是)Japanese
- 3I am surprised they can play in this heat中包含了什么句子成分?
- 4造成一年中白昼时间长短变化现象的主要原因是()
- 5李奶奶家的供奉神明的两盏红烛样小灯日夜亮着,两盏灯都标有“220V,36W”字样,它们并联在家庭电路中.李奶奶抱怨小灯的灯丝太容易烧断.请你在不再添加其他仪器,不影响使用的前提下,像个办法帮李奶奶解决
- 6函数y=-4x+3的图象与x轴的交点坐标是_.与y轴的交点坐标是_.
- 7改错 He and his parents live in a new house now.
- 8比较2013分之2012与2014分之2013的大小
- 9一道找规律的题
- 10形容人品德高尚的成语,
热门考点
- 1名词怎么变成复数形式?
- 2Do you want to know whom invented the television?改为被动语态 DO you want to know who the
- 3有没有关于青松和雪的诗句?作者是谁?梅花和雪的呢?作者是谁?
- 4设数列An的前n项和Sn,满足Sn=2an-2n+1,n属于N 求数列{nAn/3}的前n项和Tn
- 5How often do you and your classmates go for an outing in a year where do you usually go
- 6There are no roads,no cars and no buses there.
- 7希望小学256名学生排成两路纵队去参观科技图片展,相邻两个同学之间的间隔是1米.队伍长多少米?
- 8分子质量 150 有机物
- 9已知PT切⊙O于T,PB为经过圆心的割线交⊙O于点A,(PB>PA),若PT=4,PA=2,则cos∠BPT=( ) A.45 B.12 C.34 D.23
- 10高三语文病句一难题求解.奶牛在食用这些饲料后,原奶中的黄曲霉毒素超标