当前位置: > 证明曲线积分与路径无关:∫(x+y)dx+(x-y)dy {积分上限(2,3),下线(1,1)} 在整个xoy...
题目
证明曲线积分与路径无关:∫(x+y)dx+(x-y)dy {积分上限(2,3),下线(1,1)} 在整个xoy
证明曲线积分与路径无关:∫(x+y)dx+(x-y)dy {积分上限(2,3),下线(1,1)} 在整个xoy面内与路径无关,计算分值

提问时间:2020-12-26

答案
∫ P dx+Q dy
要证明此种积分与路径无关,只需证əQ/əx=əP/əy
令P=x+y,Q=x-y,则
əQ/əx=1=əP/əy
∴曲线积分与路径无关(在整个xoy面内)
∴原积分=∫ (x0,x1) P(x,y0) dx+∫ (y0,y1) Q(x1,y) dy
或 =∫ (x0,x1) P(x,y1) dx+∫ (y0,y1) Q(x0,y) dy
对于本题,有
原积分=∫ (1,2) (x+1) dx+∫ (1,3) (2-y) dy
=[x²/2+x]|(1,2)+[2y-y²/2]|(1,3)
=5/2+0
=5/2
希望我的解答对你有所帮助
别忘了及时采纳哦!
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.