题目
在三角形ABC的外角平分线BP,CP相交与点P,试说明点P也在角BAC的平分线上.
提问时间:2020-12-26
答案
证明:
作PM⊥AD于点M,PN⊥BC于点N,PQ⊥AE于点Q
∵BP是角平分线
∴PM=PN
∵CQ是角平分线
∴PN=PQ
∴PM=PQ
∴P在∠BAC的平分线上
∴AP平分∠BAC
作PM⊥AD于点M,PN⊥BC于点N,PQ⊥AE于点Q
∵BP是角平分线
∴PM=PN
∵CQ是角平分线
∴PN=PQ
∴PM=PQ
∴P在∠BAC的平分线上
∴AP平分∠BAC
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点