当前位置: > 证明向量组线性无关...
题目
证明向量组线性无关
设A是n阶方针,若存在n维列向量a和正整数k,使得A^k*a=0,A^(k-1)*a!=0,证明:向量组a,A*a,A^2*a,…,A^(k-1)*a线性无关

提问时间:2020-12-25

答案
设x1a+x2Aa+x3A^2a+.+xkA^(k-1)a=0.上式左乘以A^(k-1),得x1A^(k-1)a=0,所以x1=0.左乘以A^(k-2),得x2=0.继续做下去,所有的系数都是0.所以向量组线性无关
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.