当前位置: > 集合M={xIx=2k+1,k∈Z},N={xIx=4k±1,k∈Z}...
题目
集合M={xIx=2k+1,k∈Z},N={xIx=4k±1,k∈Z}
怎样证明N∈M?书上说因为M是奇数集,所以N∈M 求详解

提问时间:2020-12-25

答案
将2K作为变量,当M=4K-1时,即M=2(2K-1)+1时,M为奇数,当M=4K+1时,即M=2(2K)+1,所以M为奇数,综上所述,M为全体奇数,所以,N包含于M
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.