当前位置: > 求曲面z=2x^2+2y^2及z=6-x^2-y^2所围成的立体体积...
题目
求曲面z=2x^2+2y^2及z=6-x^2-y^2所围成的立体体积

提问时间:2020-12-25

答案
两个方程联立 得出在xoy坐标面上的投影 即为区域D :x^2+y^2=2 ,用极坐标
区域D为 0《θ《2π ,0《ρ《√2
用二重积分 体积为
∫∫(D) [(6-x^2-y^2)-(2x^2+2y^2)]dxdy
=∫∫(D)(6-3x^2-3y^2)dxdy
=∫0~2πdθ∫0~√2(6-3ρ^2)ρdρ
=2π*(3ρ^2-3/4ρ^4)|0~√2
=2π*(3√2^2-3/4√2^4-0)
=2π*3
=6π
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.