当前位置: > 题是 ∫[1/√(x+x^2)]dx 答案是arcsin(2x-1)+C...
题目
题是 ∫[1/√(x+x^2)]dx 答案是arcsin(2x-1)+C

提问时间:2020-12-25

答案
你的答案是错的
分母在根号下配方
∫[1/√(x+x^2)]dx
=∫ 1/√[(x+1/2)^2-1/4] dx
=ln| 1/2+x+√(x+x^2)|+C 这一步是套公式
若把题目变成∫[1/√(x-x^2)]dx,才是你的结果
∫[1/√(x-x^2)]dx
=∫ 1/√[1/4-(x-1/2)^2] dx 下面套公式
=arcsin(2x-1)+C
两个公式:
∫ 1/√[x^2-a^2]dx=ln|x+√[x^2-a^2]|+C
∫ 1/√[a^2-x^2]dx=arcsin(x/a)+C
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.