题目
1题 急...
设直线y=2x+b与抛物线y²=4x相交於A,B两点,已知弦长AB=3√5,点P为抛物线上一点,ΔPAB的面积为30 求点P的坐标
设直线y=2x+b与抛物线y²=4x相交於A,B两点,已知弦长AB=3√5,点P为抛物线上一点,ΔPAB的面积为30 求点P的坐标
提问时间:2020-12-24
答案
【1】联立抛物线与直线方程:{y=2x+b.
{y²=4x.
可得:4x²+4(b-1)x+b²=0.
判别式⊿=16(1-2b).
由“圆锥曲线弦长公式”可得:
|AB|=√[5(1-2b)].又由题设可知,弦|AB|=3√5.
∴√[5(1-2b)]=3√5.
∴b=-4.
∴直线方程为:y=2x-4.
【2】因点P在抛物线y²=4x上,
∴可设坐标P(a²,2a).a∈R.
由“点到直线的距离公式”,可求得点P到直线y=2x-4的距离d为:
d=|2a²-2a-4|/(√5).
【3】由题设及三角形面积公式可知:S=[d×|AB|]/2
即有:30=[d×3√5]/2.
∴d=4√5.又d=|2a²-2a-4|/(√5).
∴|2a²-2a-4|/(√5)=4√5.
解得:a=-3,或a=4.
∴点P(9,-6)或P(16,8).
{y²=4x.
可得:4x²+4(b-1)x+b²=0.
判别式⊿=16(1-2b).
由“圆锥曲线弦长公式”可得:
|AB|=√[5(1-2b)].又由题设可知,弦|AB|=3√5.
∴√[5(1-2b)]=3√5.
∴b=-4.
∴直线方程为:y=2x-4.
【2】因点P在抛物线y²=4x上,
∴可设坐标P(a²,2a).a∈R.
由“点到直线的距离公式”,可求得点P到直线y=2x-4的距离d为:
d=|2a²-2a-4|/(√5).
【3】由题设及三角形面积公式可知:S=[d×|AB|]/2
即有:30=[d×3√5]/2.
∴d=4√5.又d=|2a²-2a-4|/(√5).
∴|2a²-2a-4|/(√5)=4√5.
解得:a=-3,或a=4.
∴点P(9,-6)或P(16,8).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1一个圆柱削去12平方厘米,正好削成一个等底等高的圆锥,这个圆柱的体积是多少?
- 2已知Mg(OH)2之Ksp=8.9x10^-12,试求Mg(OH)2在以下情况中的溶解度
- 3全等三角形数学题
- 4七年级同学去春游,队伍从学校出发,以每小时4千米的速度前进,走了一千米时,班长回去拿忘了带的东西,他
- 5我害怕明天的到来用英语说是I am afraid of tomorrow coming 还是i am afraid tomorrow coming
- 6将函数y=log3x的图象向上平移两个单位,得到函数f(x)的图像,当x属于【1,9】时,求函数y=【f(x)】^2+f(x^2)的最大值
- 7把顶角108°的等腰三角形,分成3个等腰三角形,怎么分
- 813÷39+(1/26+2/39)×13简便计算
- 9谷氨酸在体内如何氧化供能?又如何转变成葡萄糖?
- 10已知y=f(x的平方),求y的导数.
热门考点