当前位置: > 已知四边形对角互补,怎样证明它是圆的内接四边形?...
题目
已知四边形对角互补,怎样证明它是圆的内接四边形?

提问时间:2020-12-24

答案
假设这ABCD四点不共圆,则其中有三点ABC必有外接圆O,则点D不在圆O上,有二种情况:
点D在圆内或点D在圆外,下面要否定这两种情况,
若点D在圆O内,(图自己画)延长AD交圆O于E,则ABCE四点共圆,得∠ABC+∠AEC=180
∵∠ADC>AEC∴∠ABC+∠ADC>180.这与已知对角互补矛盾.
同理可证点D在圆外也与已知矛盾,
所以假设错误,原命题正确
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.