题目
在数1和2之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘机记为An,令an=log2An n为正整数.
(1) 求数列{An}的前n项和Sn
(2) 求Tn=tana2×tana4+tana4×tana6+...+tana2n×tana2n+2
(1) 求数列{An}的前n项和Sn
(2) 求Tn=tana2×tana4+tana4×tana6+...+tana2n×tana2n+2
提问时间:2020-12-24
答案
An=(1×2)^[(n+2)/2]=2^[(n+2)/2]=2^(1+n/2)=2*2^(n/2)=2*(√2)^n
(1)Sn=A1+A2+……+An=2√2*[1-(√2)^n]/(1-√2)=2(2+√2)*[(√2)^n-1]
(2)an=log2 An=log2 2^(1+n/2)=1+n/2
tana2n=tan(n+1)
则
tana2n×tana(2n+2)=tan(n+1)tan(n+2)
考虑tan1=tan[(n+2)-(n+1)]=[tan(n+2)-tan(n+1)]/[1+tan(n+2)tan(n+1)]
解得
tan(n+2)tan(n+1)=[tan(n+2)-tan(n+1)-tan1]/tan1
=cot1*[tan(n+2)-tan(n+1)]-1
故
Tn=tana2×tana4+tana4×tana6+...+tana2n×tana2n+2
=tan2×tan3+tan3×tan4+...+tan(n+1)×tan(n+2)
=cot1*(tan3-tan2)-1+cot1*(tan4-tan3)-1+……+cot1*[tan(n+2)-tan(n+1)]-1
=cot1*[tan(n+2)-tan2]-n
=tan(n+2-2)*[1+tan(n+2)tan2]*cot1-n
=tann/tan1*[1+tan(n+2)tan2]-n
(1)Sn=A1+A2+……+An=2√2*[1-(√2)^n]/(1-√2)=2(2+√2)*[(√2)^n-1]
(2)an=log2 An=log2 2^(1+n/2)=1+n/2
tana2n=tan(n+1)
则
tana2n×tana(2n+2)=tan(n+1)tan(n+2)
考虑tan1=tan[(n+2)-(n+1)]=[tan(n+2)-tan(n+1)]/[1+tan(n+2)tan(n+1)]
解得
tan(n+2)tan(n+1)=[tan(n+2)-tan(n+1)-tan1]/tan1
=cot1*[tan(n+2)-tan(n+1)]-1
故
Tn=tana2×tana4+tana4×tana6+...+tana2n×tana2n+2
=tan2×tan3+tan3×tan4+...+tan(n+1)×tan(n+2)
=cot1*(tan3-tan2)-1+cot1*(tan4-tan3)-1+……+cot1*[tan(n+2)-tan(n+1)]-1
=cot1*[tan(n+2)-tan2]-n
=tan(n+2-2)*[1+tan(n+2)tan2]*cot1-n
=tann/tan1*[1+tan(n+2)tan2]-n
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1i will keep that in mind 是in mind 介宾做补语吗?
- 2已知多项式(2k-3)x+2x*x-3k的值与k的取值无关,
- 3初中基础1意思!
- 4使分式x的平方-1分之x的平方-x-2的值为0的所有x的值为
- 5ray 发音
- 6从最后的句子看,苏轼是一个怎样的人
- 7在12的所有约数中,一共有( )组互质数
- 8Sorry,Username Already Taken.Please Choose Another
- 9买2千克荔枝和3千克桂圆,共付40元.已知2千克荔枝的价钱等于1千克桂圆的价钱.荔枝每千克_元,桂圆每千克_元.
- 10一个圆柱体的侧面展开后得到一个边长是6.28厘米的正方形,这个圆柱的底面积是多少平方厘米?
热门考点