当前位置: > 设函数f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0与g(x0)<0同时成立,则实数a的取值范围是_....
题目
设函数f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0与g(x0)<0同时成立,则实数a的取值范围是______.

提问时间:2020-12-24

答案
由f(x)=x2-ax+a+3知f(0)=a+3,f(1)=4,
又存在x0∈R,使得f(x0)<0,
知△=a2-4(a+3)>0即a<-2或a>6,
另g(x)=ax-2a中恒过(2,0),
故由函数的图象知:
①若a=0时,f(x)=x2-ax+a+3=x2+3恒大于0,显然不成立.
②若a>0时,g(x0)<0⇔x0<2
a>0
f(2)<0
⇒a>7

③若a<0时,g(x0)<0⇔x0>2
此时函数f(x)=x2-ax+a+3图象的对称轴x=
a
2
<−1

故函数在区间(
a
2
,+∞)上为增函数
又∵f(1)=4,
∴f(x0)<0不成立.
故答案为:(7,+∞).
函数f(x)=x2-ax+a+3的图象恒过定点(1,4),g(x)=ax-2a的图象恒过定点(2,0),利用这两个定点,结合图象解决.

一元二次不等式的应用;一元二次不等式的解法.

充分挖掘题目中的隐含条件,结合图象法,可使问题的解决来得快捷.本题告诉我们,图解法对于解决存在性问题大有帮助.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.