当前位置: > 方程sin(x^sinx)=cos(x^cosx)在闭区间【π/4,π/2】内的解的个数是...
题目
方程sin(x^sinx)=cos(x^cosx)在闭区间【π/4,π/2】内的解的个数是

提问时间:2020-12-24

答案
一楼,你真的验算过了吗?sin[(π/4)^(√2/2)]=cos[(π/4)^(√2/2)]?
此题答案是0!
令f(x)=sin(x^sinx),g(x)=cos(x^cosx)
f'(x)=cos(x^sinx)*[x^(sinx)]*(cosxlnx+sinx/x),g'(x)=-sin(x^cosx)*[x^(cosx)]*(-sinxlnx+cosx/x)
当x∈[π/4,π/2]时,cosxlnx+sinx/x>0恒成立,所以f'(x)>0恒成立,f(x)单调递增;
当x∈[π/4,π/2]时,-sinxlnx+cosx/x先正后负,再加上g'(x)最前面的负号,所以g(x)先减后增.
当x=π/4时,(π/4)^(√2/2)>π/4,所以
f(π/4)=sin[(π/4)^(√2/2)]>cos[(π/4)^(√2/2)]=g(π/4)
f(π/2)=sin[(π/2)^1]>cos[(π/2)^0]=g(π/2)
综合上述,在[π/4,π/2]上,始终有f(x)>g(x),两函数无交点.原方程解个数为0.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.