当前位置: > 正方形ABCD,AB边上有一点E,AE=3,EB=1.在AC上有一点P.使EP+BP为最短,则ED等于多少?...
题目
正方形ABCD,AB边上有一点E,AE=3,EB=1.在AC上有一点P.使EP+BP为最短,则ED等于多少?
按照标准格式,

提问时间:2020-12-23

答案
证明:连接BP
因为:AP=AP AB=AD 角DAP=角BAP
所以:三角形DAP全等于三角形BAP
所以:PB=PD
所以:PB+PE=PD+PE
因为:两点之间线段最短
所以:D、P、B三点在同一直线上时取到最小值
所以:最小值=三角形DAE斜边的边长
所以:最小值为根号(3的平方+4的平方)=5
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.