当前位置: > 抛物线y2=4x上一点A到点B(3,2)与焦点的距离之和最小,则点A的坐标为_....
题目
抛物线y2=4x上一点A到点B(3,2)与焦点的距离之和最小,则点A的坐标为______.

提问时间:2020-12-23

答案
由抛物线y2=4x可得焦点F(1,0),直线l的方程:x=-1.如图所示,过点A作AM⊥l,垂足为M.则|AM|=|AF|.因此当三点B,A,M共线时,|AB|+|AM|=|BM|取得最小值3-(-1)=4.此时yA=2,代入抛物线方程可得22=4xA,解得xA...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.